Eternal AI
  • The AI layer for the new internet
  • eternals
    • What are Eternals?
    • Specification
    • Proof-of-Compute
  • The new internet, AI-powered
    • Bitcoin, AI-powered
      • Eternals on Bitcoin
      • BitAI Virtual Machine
      • Run a BitAI node
    • Ethereum, AI-powered
    • Solana, AI-powered
  • smart contracts, ai-powered
    • How to use onchain LLM
    • Onchain AI composability - AI Powered Wallet
    • Onchain AI Composability - AI Powered Gaming With Chess
  • neurons
    • What are Neurons?
    • Neuron Device
    • Virtual Neurons
      • Solo Neuron
      • Neuron as a Service
      • Pooled Neuron
  • AI CHAINS
    • What are AI chains?
    • Bittensor and existing concepts
    • Base layer: Bitcoin vs Bittensor
    • AI chains: Bitcoin L2s vs Subnets
    • Apps: Smart contracts vs APIs
  • EAI
    • Utilities
    • Tokenomics
  • fully onchain ai models
    • Architecture
    • Deploy your first fully onchain AI
      • Set up your development environment
      • Create a self-custody wallet
      • Train an AI model in Keras
      • Transform the Keras model to Eternal
      • Send, receive, and trade Eternals
    • Progress
    • Misc
      • Transforming an AI Model into an Eternal
      • Standardized data formats
      • Specification
        • Layers
        • Models
  • Decentralized Inference API
    • API
      • API Key
      • Completions
      • Chat completion
      • Create a dagent
      • Get deposit address
      • Get dagent info
      • Agent Completion
    • Onchain Models
    • Tutorials
      • Build unstoppable Eliza agents
      • Build unstoppable Rig agents
      • Build unstoppable ZerePy agents
      • Decentralized ChatGPT
      • Don't Trust, Verify
      • Adjust your dagent personality
      • Launch on Twitter
      • Chain of thought
      • Build a dagent as a service with EternalAI API
    • Open Source
      • Architecture
      • Installation
Powered by GitBook
On this page
  • The base layer
  • Layer activations
  • Core layers
  • Convolutional Layers
  • Pooling layers
  • Recurrent layers
  • Normalization layers
  • Reshaping layers
  • Merging layers
  • Activation Layers
  • Special Purpose Layers
  1. fully onchain ai models
  2. Misc
  3. Specification

Layers

PreviousSpecificationNextModels

Last updated 10 months ago

The base layer

This is the class from which all layers inherit.

interface ILayer {
    error TensorTypeNotSupported();
    error IncorrectTensorType();
    error IncorrectTensorDim();

    function appendWeights(Float32x32[] calldata weights, uint idx) external returns (uint, bool);
    function getParamsCount() external view returns (uint);
    function predict(Tensors.TensorData[] calldata input) external returns (Tensors.TensorData memory);    
}

Layer activations

relu sigmoid softmax leakyrelu tanh linear

Coming soon:

  • softplus

  • softsign

Core layers

Coming soon:

  • Masking layer

  • Lambda layer

  • Identity layer

Convolutional Layers

  • Conv3D layer

Pooling layers

Recurrent layers

Coming soon:

  • GRU layer

  • Bidirectional layer

Normalization layers

Coming soon:

  • BatchNormalization layer

  • LayerNormalization layer

  • UnitNormalization layer

  • GroupNormalization layer

Reshaping layers

Coming soon:

  • ZeroPadding2D layer

  • Reshape layer

  • Permute layer

Merging layers

Coming soon:

  • Concatenate layer

  • Average layer

  • Maximum layer

  • Minimum layer

  • Dot layer

Activation Layers

Coming soon:

  • Softmax layer

  • LeakyReLU layer

  • PReLU layer

  • ELU layer

Special Purpose Layers

Input layer Dense layer Embedding layer

Conv2D layer

Coming soon:

MaxPooling2D layer AveragePooling2D layer

SimpleRNN layer LSTM layer

Flatten layer Rescale layer

Add layer Subtract layer Multiply layer

ReLU layer Sigmoid layer

OnesLike layer ZerosLike layer

✅
✅
✅
✅
✅
✅
✅
✅
✅
✅
✅
✅
✅
✅
✅
✅
✅
✅
✅
✅
✅
✅
✅
✅